Jupiter

Main Page < Systems < Sol

Jupiter is the fifth planet from the Sun and the largest planet within the Solar System.[13] It is a gas giant with a mass slightly less than one-thousandth that of the Sun but is two and a half times the mass of all of the other planets in our Solar System combined.

The planet was known by astronomers of ancient times and was associated with the mythology and religious beliefs of many cultures. The Romans named the planet after the Roman god Jupiter.[14] When viewed from Earth, Jupiter can reach an apparent magnitude of −2.94, making it on average the third-brightest object in the night sky after the Moon and Venus. (Mars can briefly match Jupiter’s brightness at certain points in its orbit, an example is at opposition.)

Jupiter is primarily composed of hydrogen with a quarter of its mass being helium; it may also have a rocky core of heavier elements. Because of its rapid rotation, Jupiter’s shape is that of an oblate spheroid (it possesses a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding the planet is a faint planetary ring system and a powerful magnetosphere. There are also at least 63 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.

Jupiter is perpetually covered with clouds composed of ammonia crystals and ammonium hydrosulfide. The clouds are located in the tropopause and are arranged into bands of different latitudes, known as tropical regions. These are sub-divided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 100 m/s (360 km/h) are common in zonal jets. The zones have been observed to vary in width, color and intensity from year to year, but they have remained sufficiently stable for astronomers to give them identifying designations.

The cloud layer is only about 50 km deep, and consists of at least two decks of clouds: a thick lower deck and a thin clearer region. There is also a thin layer of water clouds underlying the ammonia layer, as evidenced by flashes of lightning detected in the atmosphere of Jupiter. (Water is a polar molecule that can carry a charge, so it is capable of creating the charge separation needed to produce lightning.) These electrical discharges can be up to a thousand times as powerful as lightning on the Earth. The water clouds can form thunderstorms driven by the heat rising from the interior.

The orange and brown coloration in the clouds of Jupiter are caused by upwelling compounds that change color when they are exposed to ultraviolet light from the Sun. These colorful compounds, known as chromophores, mix with the warmer, lower deck of clouds. The zones are formed when rising convection cells form crystallizing ammonia that masks out these lower clouds from view.

Jupiter’s low axial tilt means that the poles constantly receive less solar radiation than at the planet’s equatorial region. Convection within the interior of the planet transports more energy to the poles, however, balancing out the temperatures at the cloud layer.

Jupiter

Caelestis Indomitus Tanelornpete